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ABSTRACT : Recent developments in chaotic dynamics have indicated that 
qualitative information of a dynamical system can be extracted from the 
observation of a single time series as the time series bears the marks of all 
other variables relevant in the underlying dynamics. In this paper we review and explore the application of this approach in connection with the study of 
ocean wave statistics. 

INTRODUCTION 

The study of waves at the ocean surface has always relied on the 
concepts that the sea surface waves are random processes, and the surface 
displacement at a given point can be regarded as the resultant of many 
independent wave components. Fourier transform and energy spectrum analysis 
have been frequently used as the efficient and basic method for analyzing 
measured surface wave time-series data. An effective application·of the 
spectrum analysis requires the assumption that the processes be stationary 
which is, however, not always realistic. Furthermore, statistical analysis 
of time series wave data provides little information toward the understanding 
of the dynamical processes. Recent developments in chaotic dynamics have 
advanced interesting new approaches for the analysis of time series data. In particular, theorems have been developed that lead to procedures for 
reconstructing a dynamical system from the observation of a single variable. 
It appears that a time series actually bears the marks of all other variables 
relevant in the underlying dynamics, and key features of the dynamics can be extracted from a given time series. In this paper we review and explore the chaotic dynamics approaches and their applications to the study of ocean wave 
statistics and dynamics. Specifically we examine if it is possible to 
identify an attractor for an ocean wave time series and determine its 
dimensionality as.well as the minimal dimensionality of the phase space 
within which the attractor is embedded. 

DYNAMIC SYSTEMS AND PHASE SPACE 

The advances of chaotic dynamics provide new and stimulating 
approaches that can be applied to the study of ocean waves. The basic 
proposition is that relatively simple systems of coupled nonlinear first
order equations often have chaotic solutions. These solutions -- sometimes 
called strange attractors -- are much more irregular than solutions of 
traditional dynamic equations. This has generated the hy·:?othesis that some 
of the fluid flow problems can be qualitatively explained by models that are 
highly simplified in comparison with full hydrodynamic equations. While the 
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dynamic systems approach has not yet achieved much quantitative predictive 

power at the present, it has provided a significant new direction of study. 

Following the historical work of Lorenz (1963) a dynamic system can be 

regarded formally as: 

dy 
= F(y)' (1) 

dt 

where time, t, is the single independent variable, y = (Yl· Y2· .. ·Yn) 

represents a state of the system and may be thought'of as a point in a 

suitably defined space -- usually called phase space, and the vector field 

F(y) is in general a nonlinear operator acting on points in the phase space. 

A state which is varying in accordance with (1) is represented by a moving 

particle traveling along a trajectory in phase space. The trajectory becomes 

a strange attractor when it is chaotic, sensitively depends on the initial 

conditions, and is attracted to a bounded region in phase space. 

Many current studies on chaotic dynamics have focused on the 

understanding of scaling properties and characterization of strange 

attractors. Strange attractors can be generally characterized through 

quantities like Kolmogorov entropy, Lyapunov exponents, and generalized 

dimensions. If the governing equations are known, then there are reliable 

methods for determining these quantities. If, however, only measurements of 

time series are available, then the problem becomes much more cumbersome. In 

the present study we pursue this latter course of time series analysis 

without resorting to the knowledge of ocean wave hydrodynamics. We are 

primarily interested in the applicability of the various approaches of 

characterizing strange attractors ,and in particular the determination of 

dimension of the attractor as the basic degrees of freedom of the system that 

govern the quantitative predictability of the dynamic system. 

DIMENSIONS OF A TIME SERIES 

Dimension is one of the most basic properties of geometric objects. 

Basically, the dimension of a space is the amount of information needed to 

specify points in the space accurately. For dynamics the dimension provides 

an indication of the number of essential variables required to represent the 

dynamics. The dimensionality of a phase space, since it controls the number 

of possible states, will therefore be associated with the number of a priori 

degrees of freedom of the system. For chaotic attractors the dimension 

usually takes on noninteger values. Following the presentations of 

Atmanspacher et al. (1988), the concept of a fractal (noninteger) dimension D 

(Mandelbrot, 1982) of an attractor in a d-dimensional phase space with D < d 

can be deduced from 'information theoretical' considerations: 

Ir 
D lim (2) 

r-+0 log(l/r) 

where the dimension D describes how the information Ir scales with varying 

spatial resolution r. By dividing the d-dimensional phase space into M boxes 

of size rd then the probability that one of the N total points on the 

trajectory falls into the ith box is Pi = Ni/N and a generalized information 

of order q is 
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1 M 
Iq = log[~ Piq ]. (3) 1-q i=l 

Substituting (3) into (2) leads to the form of generalized dimension defined as: 

M 
log[ ~ Piq 

1 i=l 
lim 

q-1 r->0 log(r) 
(4) 

Here Dq is a non-increasing function of q, i.e., Dq ~ Dq• for all q ~ q'. For q equals 0, 1, and 2 the corresponding Do, D1, and D2 are the frequently used fractal, information, and correlation dimensions, respectively. 

RECONSTRUCTION OF AN ATTRACTOR 

Perhaps one of the most interesting and enticing results developed from the chaotic dynamics is the notion that it is possible to reconstruct certain properties of an attractor in phase space from the time series of a single variable. Following the earlier works of Packard et al. (1980) and Takens (1981), the basic principle is to create a set of m-dimensional vectors from a single time series Xi= x(ti), i = 1, ... ,N, with the Xi corresponding to measurements in time. This process is known as 'embedding', and m is the 'embedding dimension'. The reconstruction is accomplished by introducing a time lag, s, such that them-dimensional vectors have the form 

Xi- [x(ti), x(ti + s), ... , x(ti + (m- l)s)]. (5) 

In principle, the various characterizations -- the Kolmogorov entropy, the Lyapunov exponents, and the generalized dimensions -- are all accessible through this reconstruction (Simm et al., 1987). 

To evaluate the generalized dimension from the attractor reconstruction of a single variable time series, Pawelzik and Schuster (1987) obtained the following definition for Dq corresponding to (4): 

log[Cq(r)] 
lim 

(6) r->0 log(r) 

where Cq(r) is the generalized correlation integral of order q given by 

Cq(r) = {= ~ [= ~ 8(r 
N i=l N j=l l q -1}1/ ( q- 1) 

- lxi- Xjj)J (7) 

where 8(r - jxi - Xjj) is the Heaviside function which serves to count pairs of points (Xi,Xj) that fall within the scale r. For q = 2, (7) reduces to 

l N N 
C(r) = ~ ~ 8(r - jxi - Xjj), 

N2 i=l j=l 
(8) 
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which is the original correlation integral introduced by Grassberger and 

Procaccia (1983) for the widely used approach for estimating correlation 

dimension from a time series data. A detailed review and analysis of this 

method is given by Theiler (1988). 

APPLICATION TO OCEAN WAVE TIME SERIES 

Along with the embedding reconstruction measure described in (5), 

equations (8) and (7) form the basis for the dimensional analysis of 

experimental time series. While it is relatively computation intensive, the 

implementations of (8) and (7) are basically straightforward. To test their 

pertinence in connection with the study of ocean waves, we apply these 

approaches to the analysis of measurements of wind waves in the Great Lakes. 

To facilitate the exploratory study, we selected two sets of wind wave data 

recorded in Lake Erie during 1981 (Schwab et al., 1984). The two data sets 

comprise generally similar statistical properties. One set, the #3188, 

recorded a significant wave height of 1.2 mat hour 9:30 on 3 October, 

whereas the other set, the #4213, recorded a lower significant wave height of 

0.3 m at hour 18:00 on 24 October. The calculated energy spectra for the two 

wave data sets are shown in Figure 1. 

We first apply equation (8) to calculate the correlation integral C(r) 

for embedding dimension m ranges from 4 to 23 as shown in Figures 2(a) and 

3(a) for data sets #3188 and #4213 respectively. The left most curve is for 

m = 4 with the subsequent curves for increasing m plotted toward right. The 

scale resolution r ranged from 0.001 to 10, and we used a time lag of s = 1. 

The slopes of the main part of the C(r) vs. r curves represent the 

correlation dimension D. The variations of D as a function of embedding 

dimension mare plotted in Figures 2(b) and 3(b). It is clear that D 

converges for #3188 beyond m- 16. For #4213, however, D converges between 

m - 6 and m - 12 but tends to diverge beyond that. We are not certain at the 

present what caused these differences. We find it is appropriate to choose m 

equals 18 and 8 respectively for #3188 and #4213 for the calculation of 

generalized correlation integral Cq(r) using equation (7). Figures 2(c) and 

3(c) present the results of Cq(r) vs. r for information order q varies from 

-9 to 9. The lowest curve in the figures is for q = -9. Again the slope of 

the main part of the curves represents the generalized dimension Dq. Figures 

2(d) and 3(d) present the spectra of Dq as a function of q. These smooth 

spectrum curves for Dq clearly show that generalized dimension exists for 

wind wave data, and that they are not random processes. It is also of 

interest to note that while the two data sets may have similar statistical 

properties, they have significantly different chaotic contents. It appears 

that waves with higher wave heights have higher Dq spectrum than those with 

lower wave heights. Furthermore, it is also evident that it is unrealistic 

to expect a single, unified dimension for all ocean wind waves. 

CONCLUDING REMARKS 

With this brief review and exploratory study of the application of 

chaotic dynamics and its approach to ocean wind waves, we find the approach 

is of interest, useful, and provides significantly new insights toward 

further understanding of the ocean wave processes. The different generalized 

dimension for different stages of wave growth resulted from this study, if it 

can be confirmed from additional studies, will certainly tend to transform 

the concept of the existence of an universal wave spectrum. The application 
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of the chaotic dynamics approach to the study of ocean wave statistics clearly warrants further detailed and concerted investigations. 
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Figure 1. Calculated wind wave energy spectra for the two selected data sets 

recorded in Lake Erie during 1981. 
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Figure 2. For data set #3188: 
(a) Correlation integral C(r) versus scale resolution r for 

different embedding dimensions m. 
(b) The slope of the curves in (a) versus m. 
(c) Generalized correlation integral Cq(r) versus r for different 

information order q. 
(d) Generalized dimension Dq versus q. 
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Figure 3. Same as Figure 2 for data set #4213. 
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